Electrospun API-loaded mixed matrix membranes for controlled release
نویسندگان
چکیده
منابع مشابه
On the Effective Permeability of Mixed Matrix Membranes
Mixed matrix membranes (MMMs) are attracting significant interest for pervaporation and gas separation applications. To better comprehend the impact of filler particles within polymer matrices, the species permeation mass transport was theoretically studied by numerical simulation using finite differences. The Fick’s second law of diffusion was solved for a three-dimensional MMM to obtain the c...
متن کاملPolyurethane Mixed Matrix Membranes for Gas Separation: A Systematic Study on Effect of SiO2/TiO2 Nanoparticles
In this study, the effect of SiO2 and TiO2 nanoparticles on the gas separation performance of the polyurethane (PU) membranes has investigated. Polyurethanes were synthesized by bulk two step polym...
متن کاملMixed matrix membranes prepared from high impact polystyrene with dispersed TiO2 nanoparticles for gas separation
The current study presents synthesis and characterization of high impact polystyrene - TiO2 nanoparticles mixed matrix membranes for separation of carbon dioxide from nitrogen. The solution-casting method was used for preparation of membranes. The nano mixed matrix membranes were characterized using scanning electron microscopy to ensure the suitable dispersion of nano particles in high impact ...
متن کاملMatrix Tablets: An Effective Way for Oral Controlled Release Drug Delivery
The purpose of this review article is to characterize all of the parameters regarding the types, polymers used, and release kinetics of matrix tablets. Matrix system was the earliest oral extended release platform for medicinal use. Matrix tablets are most commonly used methods to modulate the release profile of drugs. They are much desirable and preferred for such therapy because they o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RSC Advances
سال: 2017
ISSN: 2046-2069
DOI: 10.1039/c7ra08600h